Risk and Failure Probability, What is it?

Terminology

- 1. Risk is the:
 - a. Potential of losing something of value (e.g., life, property, performance, schedule, or cost).
 - b. Effect of uncertainty on objectives. (Ref. ISO 31000, 2009)
- 2. A risk statement contains three elements (e.g., as in three columns in a table), namely:
 - a. Scenario, what can go wrong?
 - b. Likelihood, what is the probability it will happen?
 - c. Consequence, what is the impact if it did happen?
- 3. **Reliability** is the:
 - a. Likelihood
 - b. An item will perform its intended function
 - c. For a stated mission time
 - d. Under stated conditions.

Risk vs. Reliability

- 1. The probability used in:
 - a. Risk is the **probability of failure**, denoted Pf, for the item of interest.
 - b. Reliability is the **probability of success**, denoted **Ps**, for the item of interest.
- 2. Fundamental math rule: Pf + Ps = 1.
- 3. When one type of probability is known, the other type can be easily determined by its complement.
- 4. Furthermore, the complement of the reliability measure makes the **likelihood axis of the risk matrix**, and the complement of safety makes the **consequence axis of the risk matrix**.

Types of Data and Methods Commonly Used to Make a Probability of Failure

- 1. **Demand-based (pass-fail events)**: For example, item x (e.g., starter solenoid) successfully completed its mission upon demand. A data set consisting of items with this type of **discrete** life data with independent trials is often modeled with the *binomial* distribution using the probability of failure (p) where:
 - a. $p = \frac{fatture\ count}{total\ number\ of\ attempts}$ based on classical statistics.
 - b. $p = \frac{failure\ count + 0.5}{total\ number\ of\ attempts + 1}$ based on one version of Bayesian statistics (see next page).
- 2. **Time-based (duration in hours, cycles, miles)**: For example, item (e.g., tire) uniquely identified as x operated successfully for y hours under conditions z until it failed. In short, item x failed in y hours (z is not needed if the same for all items in the data set). A data set consisting of items with this type of **continuous** life data is often modeled with the *Weibull* probability distribution. A special case of the Weibull is when the failure rate is constant over time. Constant failure rate (λ) can be calculated using:
 - a. $\lambda = \frac{failure\ count}{total\ run\ time}$ based on classical statistics.
 - b. $\lambda = \frac{failure\ count+0.5}{total\ run\ time}$ based on one version of Bayesian statistics (see next page).
- 3. **Failure due to variation**: In this case, item x failed not as a function of time but due to **static stress**. That is, the item failed because its stress (load) exceeded its strength (capacity). The *Stress-Strength Interference* method calculates the probability of failure being the area described by the intersection of the stress distribution and the strength distribution. Note: A **safety factor** or safety margin are not sufficient to address failures due to the variation in the item's stress and the strength!

Risk and Failure Probability, What is it?

Failure Rate Formulas Based on Bayesian Statistics¹

Data Type	Demand Based (failure on demand)	Time Based (failure while operating)
Failure Rate Formula ^{2,3}	$p = \frac{failure\ count + 0.5}{total\ number\ of\ attempts + 1}$	$\lambda = \frac{failure\ count + 0.5}{total\ run\ time}$
Prior Distribution ⁴	Beta distribution with α_{prior} = 0.5 and β_{prior} = 0.5 being a Jeffreys Prior	Gamma distribution with α_{prior} = 0.5 and β_{prior} = 0 being a Jeffreys Prior
Likelihood Function	Binomial distribution	Poisson distribution
Posterior Distribution ⁵	Beta distribution with parameters $\alpha_{post} = x + \alpha_{prior} \text{ and } \beta_{post} = n - x + \beta_{prior}$ where x is failure count and n is number of demands. The mean of the beta distribution is $\frac{\alpha}{\alpha + \beta}$.	Gamma distribution with parameters $\alpha_{post} = x + \alpha_{prior}$ and $\beta_{post} = t + \beta_{prior}$ where x is failure count and t is total run time. The mean of the gamma distribution is $\frac{\alpha}{\beta}$.
NASA PRA Guidebook ⁶	Page C-6 (pdf page 363)	Page C-11 (pdf page 369)
NASA Handbook on Bayesian Inference ⁷	Page 34 (pdf page 54)	Page 40 (pdf page 60)

Endnotes:

¹ Bayesian statistics quantitatively combines human belief (a subjectively-based probability distribution) with operational or test data (an objectively-based probability distribution).

² When the *failure count is zero*, these two Bayesian-based formulas are commonly used.

³ When the *failure count is zero* and the data type is time-based, one method in classical statistics calculates the failure rate using: $\lambda = \frac{1/3}{total \ run \ time}$.

⁴ A **Jeffreys Prior** is used when there is insufficient information to form an informed prior distribution. Thus, the Jefferys Prior is referred to as a noninformative prior and is intended to convey little prior belief or information. A **noninformative prior** allows the data (described by the likelihood function) to speak for themselves.

⁵ A Bayesian-based failure-rate formula is the mean (average) of its posterior distribution. This mean is commonly called the point Bayes' estimate. A **posterior distribution** is derived from Bayes' Theorem (Bayes-Laplace Theorem). This Theorem uses a **prior distribution** (to represent the value of the failure rate as a belief or best estimate prior to collecting field data) and a **likelihood function** (the failure distribution for field data that was collected after the stated belief). The posterior distribution is shifted in the direction of the likelihood function that was used.

⁶ Source: <u>http://www.hq.nasa.gov/office/codeq/doctree/SP2011</u>3421.pdf

⁷ Source: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090023159.pdf